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The asymptotic stability of a system with two degrees of freedom is investigated in the critical case of 

two pairs of purely imaginary eigenvalues at 1:l resonance. It is assumed that the multiple eigenvalues 

are associated with simple elementary divisors. Algebraic criteria for the asymptotic stability of the full 

system are constructed, they are based on model equations of the third approximation, on the assump- 

tion that the domain of interest is bounded by a certain submanifold of positive measure in the 

parameter space of the model equations. Certain sufficient conditions for the full system to be unstable 

are also obtained. 

A THEORY of multiple resonance of non-Hamiltonian equations has been developed for 
reversible systems [l], and also for systems of general form when the elementary divisors 
belonging to the eigenvalues are not simple [2]; the equilibrium position is, as a rule, unstable. 
But if the matrix of the linear part of the system is diagonalizable (simple elementary divisors), 
it has not proved possible to construct stability criteria. It is well known that this problem is 
transcendental [3]: the surface that separates the classes of asymptotically stable and unstable 
systems in a 24-dimensional real parameter space is transcendental. 

It will be shown below that, despite this transcendence, one can derive algebraic asymptotic 
stability criteria (the separating surface has algebraic sections). 

1. STATEMENT OF THE PROBLEM. CONSTRUCTION OF 
THE LYAPUNOV FUNCTION 

Consider an autonomous system 

x.=x(x), x(O)= 0, XER4 (l-1) 

where X(x) is a smooth vector field such that the matrix (aXlaX), has purely imaginary 
eigenvalues 4 and ;1L satisfying the resonance relation ;1, = &. Let us assume that Jt., has 
simple elementary divisors. The complex normal form of the equations in the third approxi- 
mation is 

(1.2) 
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21 =X; fikz, Z2=~3ti~,+, A 
It?2 

=a 
im + ib, 

A?n =am + ibm 

System (1.2) is stable if and only if the system in three variables obtained from (1.2) by 
changing to polar coordinates ‘;, 0, (0 = 0, - 0, is the resonance angle) is stable 

ri= Ritrl, b, @j, e’= Q(r,, TZ, ej¶ i = 1, 2 

(zi=J;;exp(iBj), Zi = qexp(-iOj)) 
(1.3) 

where 

l/*R1 =a1 lr: t ai 2rlt2 + rlfi [(al + accost + (bz - bj)sin@] f 

+ r2fi(a3cosf3 -- b,sine)t rlr,(a4cosB - bqsin28) 

‘lzRz = a2 1 rl r2 t a2 2r: + r2 * [(a6 + a8)cosf3 + (bt, -- bs)sinO] + 

t rlfi (a,cosO t b5sinf?)t r,r2(a,cos20 + b,sin28j. 

We will not write down an explicit formula for the function Q: suffice it to say that R is a 
trigonometric polynomial of degree 2 whose coefficients are homogeneous functions of degree 
1 in r, and r,. 

To construct the required Lyapunov function we will use the notion of functional extensions 
of the integral sheaf of a comparison system. This method was developed in an investigation of 
gyroscopic systems with complete dissipa~on, which used a sheaf made up of the total energy 
and extended cyclic integrals.? It has been used to analyse the stability of gyroscopes with dry 
friction [4, 51: the integral sheaf of the system was expanded by adding a certain auxiliary 
function of the phase variables. It was subsequently shown [6, 71 that the extended complete 
integral sheaf generates functional extensions of the entire sets of first integrals of the com- 
parison system. 

As comparison equations, let us take the model system 

.aH aH aH aH 
-= - 

rl 
ae, ’ 

r; = - 
ae2 ’ 

e’= __ _ - 
ar, ar2 

~=h,(r, -tr2)+‘12(b+b2t -b11)r:+6rtr2+‘lt(b-bzz+b12)X 

X rf - 2&r, + b3r2)& cd + 2(a5r1 - a3rp)x 

x 6 sine - r,r2(b4cos2B + a4sin2@) 

(1.4) 

which has been studied before [8,9] and is a special case of Eqs (1.3). Here H is the normal 
form of the Ha~ltonian at multiple resonance. Equations (1.4) can be integrated: the function 
W + C,, where 

W=C1[H- AI@, +r2)] +C2(r1 +r2)2, Ci=const 

is a complete integral sheaf, since H = It, r, +r, = c are first integrals of the system. We define a 
functio~l extension V = V’(r;, r,, 0, d)+d, (where d = (4, . . . , t-i,,,_,) is a vector of arbitrary 
constants, m>3) of the integral W +C3, as follows [7]: V is a smooth family of functions, of 

fMATROSOV B. M., Some questions of the stability of gyroscopic systems. Candidate dissertation, 05.11.03, Kazan, 

1959. 



Algebraic criteria for asymptotic stability at 1~1 remnance 585 

which W + C3 Is a special case, i.e. W = V0 LGIp where pf2j = ~~~(C~, Cz)? . . . 9 qm_-l(C,, Cz)) is a 
regular parameterized 2-surface in the space of arbitrary constants d,, , . . , 6,,,_1. 

The expression 

obviously satisfies this definition fIIj, L+ = const). 
The derivative of V along the vector field of Eqs (1.3) is 

YO = f&k3 + W2 + Gk + G3, y,, = 2&(B,,k2 t B,,k + B& 

+r2m = 2k(Clmk f C2m31 Y,, = 2k312Fm (m = 1,2) 

where k = r, /r, is a variable parameter and the coefficients Gif I’$, C# and F, depend linearly 
on the arbitrary constants Dii and Dj, and the parameters of the problem. Thus, for example 

(for the other coefficients, see the Appendix). The constants I+ and II$ are chosen so that 
the coefficients of ~0~28, sin20, cos38 and sin38 vanish, i.e. we impose upon these 
numbers the conditions Cl,,, = Ck = F, = 0 (m = 1,2). We also require that B, = 0, in order to 
simplify the coefficients of cos 8 and sin 8. We have 

AD=R, I)= (D,I,..e, D5jT w3 

where A and R are 8 by 8 and 8 by I matrices, respectively, whose elements are linear functions 
of the parameters. As the number II6 appears as a factor on the right-hand side of Eqs (1.6), it 
does not play an essential role, and we may assume it to be equal to unity. We assume that 
detA + 0. Let D = D* be a family of solutions of Eqs (1.6), depending on the parameters of the 
problem. Define the Lyapunov function to be V*, where V* is the restriction of V to this 
family. 

2. CRITERIA FOR V* AND v’* TO BE SIGN-DEFINITE 

Clearly 

V l *= r$[ya + y;lcos8 + &inO] 

y: = G;k3 + G;k' + Gfk+ G;, y;, = 2&(Bfmka + B;m) 

(m = 1,2) 

Suppose Go* +O, G,* z 0. The function V’* is sign-definite in the cone 4 a 0, rZ 2 0, 
0~8~2~ ifandonlyif ,yo*2>y$+y f*2” for any k >O (this inequality remains meaningful even 
when k=O, k =Q), since V’ * does not vanish in the planes r, = 0, r, = 0). Hence, it follows that 
V’ * will be sign~ef~te in the cone if and only if the equation 
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has no positive roots. 
We will now derive a criterion for V* to be sign-definite in the domain r, > 0, r, z 0, 

0 s 0 c 27r, assuming henceforth throughout that Q1* f 0, D,* # 0. We convert V* to the form 

Vr =ri[hO + XlcosO + 1-11 sin6 + hzcos20 + p,sin28] 

h,,=D;lk=+2D;Ik+D;2, A,=2fi(D;k+D;) 

j.i, = 2&(D;k + 0;). A2 = 2&k, p2 = 2k, k = rl/rl 

(2.2) 

(2.3) 

We transform the trigonometric polynomial on the right of (2.2) by substituting y= tg(8/2). 
This gives 

V* = r:ACy) (1 + yz)-2 

A@)= LJ + L&Y3 + L2y2 + L,y + Lo 
(2.4) 

L4 = A() -. x1 + hz, L, = 201, -- 2u2), L2 = 2(h~ - 3h2) 

LI = 2(p* + 2/i,), Lo = ho + &I + A2 (2.5) 

It is obvious that in the singular case 8 = A, when the above substitution is degenerate, we can 
calculate V* by the formula 

v* = r:L4 (2.6) 

This function vanishes if L4 = 0, but then one of the roots of the polynomial A(y) goes to 
infinity. It follows from (2.4) and (2.6) that V* is sign-definite in the domain r, 2 0, r, 2 0, 
0 c 8 < 2n if and only if, for any k > 0, the polynomial A(y) has no real roots, including the 
point at infinity (V* does not vanish in the planes r, = 0, r, = 0, because Q1* # 0, D,,* # 0). 

If A(y) has simple real roots, the function V* will change sign. In the case of multiple roots, 
however, V* may retain the same sign. Henceforth we will exclude this situation by stipulating 
that the discriminant of A(y) never vanishes at values of k where the polynomial itself has real 
roots. 

3. ASYMPTOTIC STABILITY CRITERIA. INSTABILITY 

We will now derive the necessary and sufficient conditions for asymptotic stability, assuming 
that V* is sign-definite in the relevant domain of the parameter space. 

Let A be the matrix of the linear system (1.6), D,,*, D,* parameters of V that satisfy Eqs 
(1.6), Gi*, B4.* the corresponding values of the coefficients in the derivative v’*, and tj are 
calculated from formulae (2.3) and (2.5). We put k = q lr2, and assume F(k) is the discrimmant 
of the polynomial A(y), and a is the set of positive values of k for which the polynomial itself 
has real roots. The condition F I,$0 (or L3 lb=0 $0 for the point at infinity) guarantees that 
A(y) will have no multiple roots. We then have the following theorem. 

Theorem 1. Let detA # 0, G,,* #O, G3* f 0, Q1* f 0, D,,* f 0, F I,+O, L, lq,of 0, G,, * Dl,* -c 0 
and suppose that the real algebraic equation (2.1) has no positive roots. The equilibrium 
position of the complete system (1.1) is asymptotically stable if, for any k > 0, the polynomial 
A(y) has no real roots, including the point at infinity. Otherwise, if this polynomial has at least 
one real root for some k > 0, the equilibrium is unstable. 

Proof. The assumptions of the theorem imply that V' * is sign-definite in the domain 5 z 0, 
r, L 0, 0 6 8 c 2~ (the higher-order terms dropped when deriving the model equations (1.2) do 
not affect the sign of V'*, since V* and the right-hand sides of Eqs (1.2) are homogeneous 
polynomials in zj, 7). Obviously, sign V'* = signG,,*. If A(y) has no real roots, then V* is also 
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sign-definite in that domain and sign V* = sign Dll * . It follows from the condition G,,* &* < 0 
that V * V* < 0, and therefore V* satisfies all the conditions of Lyapunov’s theorem of asymp- 
totic stability. Otherwise, if A(y) has a real root for some k > 0, then V* changes sign, so that 
the conditions of Lyapunov’s instability theorem are satisfied. 

Theorem 1 clearly furnishes algebraic criteria for the stability of the complete system in the 
domain v’* >O, since the conditions for the polynomial h(y) to have no real roots for any 
k > 0 are algebraic [lo, p. 2491. 

Let us assume that in the domain in which V’* is sign-definite the parameters Go*, 4: 
satisfy the condition G,* Dll* > 0. This means that V *, varying in the neighbourhood of 
r, = r, = 0, assumes values of the same sign as v’ * . Hence, the equilibrium position is unstable 
by Lyapunov’s instability condition. We have thus proved the following theorem. 

Theorem 2. Let detA + 0, G,* #O, G3* # 0, Q1* #O, D,* f 0, G, * Q1* >O and assume that 
Eq. (2.1) has no positive roots. Then the equilibrium position of the complete system (1.1) is 
unstable. 

It is clear that these last two theorems answer all the questions as to the stability of system 
(1.1) in the domain V’* > 0. 

To obtain further information, we consider an additional function V**, which differs from 
V* in the values of the constants Qj and Dj. To define it, we simplify the derivative V’, 
equating the coefficients of cos 0, sin 0, cos 3 0, sin 38 to zero: Bbn = 0, F, = 0 (m = 1, 2; k = 1, 2, 
3). This gives a set of linear equations analogous to (1.6) 

BD=S (3.1) 

Here D has the same meaning as before and B and S are 8 by 8 and 8 by 1 matrices, 
respectively, with elements that are linear functions of the parameters, B + A. 

Assuming that detB # 0, let V ** be the restriction of V to the family of solutions of Eqs 
(3.1). The derivative v’ ** is sign-definite if and only if the equation 

(G;‘k’ t G;‘k’ t G;‘k t Gj*)l - 4k2[(Cf;k t C,;)’ t (C;;k t C;;)‘] = 0 

has no positive roots. Repeating the previous arguments, we obtain another two theorems, 
analogous to Theorems 1 and 2. 

Note that if the function (1.5) is expressed in terms of the original complex variables, it becomes a 
homogeneous polynomial of degree four which is invariant under the transformation z+zexp(ia), 

where z =(z,, 22) and a is a parameter. With the Lyapunov function constructed as a homogeneous 
quadratic polynomial, some necessary and sufficient conditions have been established for stability in the 

case of multiple resonance, as well as a few sufficient conditions.7 

4. CRITERIA FOR THE EXISTENCE OF INVARIANT RAYS. 
LYAPUNOV INSTABILITY 

As we know, solutions asymptotic to zero play an important role in stability analyses. We 
shall now establish some conditions for the existence of invariant rays of system (1.3), i.e. 
particular solutions of the form 

rr =krz, e=e* (4.1) 

tKHAZINA G. G. and KHAZIN L. G., On the possibility of resonance stabilization of a system of oscillators. Preprint 

No. 130, Inst. Prikl. Mat. Akad. Nauk SSSR, Moscow, 1978. 
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where k and 8* are constants. To that end, we substitute (4.1) into Eqs (1.3) and, introducing 
the variable z = exp(i@), reduce the resulting equations to the form 

where 

f, = uo + VlZ + v2z2 t i&z3 t Toz4 = 0 

fz = wo + WI2 + w2z2 + iG,zJ t bi7,z4 = 0 

u. = %[(a4 - ku,) - i(b4 f kb,)] 9 02 = (Qli - a21)k+ (a1 2 - 

(4.2) 

022) 

lJ1 = -& 1 [-U6k2 t (ul t Q2 - a6 - fZs)k t as] - i[b5k2 t (66 - b8 t bl - 

The coefficients w,, w, and w, have exactly the same form, except for the substitutions 
ai +-bj, bj +a,, a,,,, --+--bh. 

The equality 

R=O (4.3) 

where R is the resultant of the polynomials fi and_ fi, yields necessary and sufficient conditions 
for system (4.2) to be consistent. Obviously, R = R. The resultant reduces to a real polynomial 
ink, of degree 14. Thus, the computation of k reduces to finding the positive roots of Eq. (4.3). 
For these values of k system (4.2) has solutions that belong to the unit circle if and only if the 
greatest colon divisor of fi and fi 

go(k)+gl(k)rc+. . .+g,(k)z”’ (m<4) (4.4) 

is non-trivial and has zeros & = exp(i0,). The polynomial (4.4) is constructed by using Euclid’s 
algorithm based on division of polynomials with a remainder. We have thus proved the 
following lemma. 

Lemma. Equations (1.3) have a particular solution of the form r, = kr,, B = 8* if and only if k 
is a positive root of Eq. (4.3) and C = exp(S*) is a root of the polynomial (4.4). 

We can now establish conditions for system (1.3) to be unstable. To that end we calculate the 
derivative r, along an invariant ray r, = kr2, 8 = 8* 

r; = r$R2(k, 1,8’) 

Obviously, the trivial solution is unstable if R,(k, 1, 0*) > 0. The instability is retained by the 
full system [ll]. We have thus proved the following theorem. 

theorem 3. If Eqs (1.3) have a family of particular solutions r, = k,r,, 8 = 8, * and at the same 
time R,(ki, 1, e,*) > 0 for some values of the parameters k and 8* in that family, then system 
(1.1) is unstable in Lyapunov’s sense. 

APPENDIX 

me expressions for the atefficients of V are 

G, =4o,,D,, +46,,+a,,)D,,+2(2a,haa +%)oi T 

+ 2(b, + b, - 26, )D, + Q,D, + 4bJ’. + 4a,D, +4b& 

G, =4(a,, +at,ZDsz +4a,,D,, +4%Dt -4bsDz + 

+ 29, + 2a, +a, )D, + 2(2b, - 6, - b, P, + 4a,D~ - 4b,D, 
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B II =2@, +a,p,, +k,D,, +(%,, +atl +a,Pi +&, --&a, +b,%Jz +&SDS i2b~L), 

B 1,=~,~,,+2(a,+c,+a,+a,)D,,+ZosD,~+~~~~+~~~+~~~~+ 1 

+&a -ha -2b,)D,t(~,,+2a,+3a,,~,+(b,,-b,,+2b,r),+~(~,+’,)D,‘+ 

+ W, -h)D, 

B *, =2a,D,, +2(a, +ff,)D,, +(3&t +a,, +a,)& + 

+Q,, -b,, - b, )D, + %D, - %D, 

B,, =2(b, - b,)D,, +2b,D,, +Q11 -bs, +b,Y’, + 

+(&,, +atl -a,P% - %4 +%De 

B1~=-2b,D,,+2(b,+b,-b,-b,y),,+2b,D,,+(b,,-b,,-2b,rC),+ 

’ @,* +a22 -2a,)D,+(b,,-b,,+Zb,)l),+(a,,+3a,,-Za,~,+ 

+ 2(6, - b, )os + WI + 0, )06 

B 31 = -2b,D, 2 + W, - b, )Dz 1 + 6, - bz, -b,)D,+@,~+hzz -o,P,+ 
+ 2b, D, + 2a,D, 

C 1~=~,D,,+~,D,,+(a,+a,+20,)D,+(b,-2b,+b,)Di+a,D,-b,D,+ 

+ 29, , +uz, p, + 2(b, 1 - b, i I& 

C 1, = a,~, t + a,~,, +a,D, t b,D, + (aI +a6 + 20, )D, + (ib, -’ bz - b* ID4 + 

+2(u,, +a,,)DS+2&2 --b,,)D* 

c, 2 = -2b,D,, + 2b,D, 2 + (2b, - b, - b, )ol f @, + 2% +os pz + b,D, + 

+a,D, + 2(b,, -b,,P& +W,, +%i)o6 

c 12 = -2beD, z + 2b,D,, - b,DI +a,D, + (b, +b, -2b,% + 

+ (a, +a6 + zO,yD, +2(b,, - bz,ZDs +2@‘* +“a2)D* 

F, =114D, t b,D1 ta,D, - b,D, + 2@, +a,r[zs +2(b8 - bapb 

F, = _b,D, +a,D, + b,Da +a,D, + 2(b, - b,LDs + 2@z +“sp6 
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